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A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercriti-
cal viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the
model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the
transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of
convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the
onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild
criteria.
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I. INTRODUCTION

As the industrial importance of supercritical fluids has
been increasing rapidly, a better understanding of transport
phenomena around and above the critical point is desired. A
fluid is in a supercritical state when its temperature and
pressure exceed their critical points �Tc , pc�. As the critical
point is approached, several thermophysical properties of the
fluid show strong divergence; for example the isothermal
compressibility and isobaric thermal expansion tend to infin-
ity, while the thermal diffusivity tends to zero �1�. Due to
these specific material properties, a new adiabatic process,
often called the ‘‘piston effect’’ �2,3�, can play an important
role in heat transfer problems near the critical point.

Basically, this effect can be explained as follows. When
the wall of a cell filled with a near-critical fluid is heated, a
thin thermal boundary layer forms at the wall. Due to the
high expansion coefficient of the fluid, the layer can expand
very rapidly and, like a piston, it can compress the rest of the
highly compressible fluid. The compression results in a ho-
mogeneous temperature rise in the fluid �3�. In a micrograv-
ity environment it was demonstrated that the heat transfer
speeds up due to this mechanism �4�, instead of the critical
slowing down scenario, which had been expected because of
the low thermal diffusivity near the critical point �5,6�.

It is worth noting that the material properties also change
abruptly far above the critical pressure, around the pseud-
ocritical temperature, where, e.g., the specific heat increases
rapidly. Accordingly we expect anomalous heat transfer in
this range of parameters, too. This expectation is supported
by several observations obtained in large-scale experimental
facilities in terrestrial conditions �7�.

In the last decade a number of numerical computations
based on the finite-volume approach have been reported
studying various aspects of heat transfer near the critical
point �8–13�.

In this paper, we propose a numerical approach to study
heat transfer in supercritical fluid. Our approach is based on
the lattice Boltzmann method, which has recently achieved
considerable success in simulating various transport phe-
nomena.

The rest of the paper is organized as follows. In Sec. II the
governing equations for the supercritical fluid are briefly dis-
cussed. In Sec. III the proposed lattice Boltzmann model is
introduced. Section IV presents numerical simulations of
classical heat transfer problems of supercritical fluids. The
adiabatic heating of the fluid by the piston effect is demon-
strated by simulating heat transfer in a supercritical fluid
layer near the critical point. As a second example, the
Rayleigh-Bénard convection is studied at various thermal ex-
pansion coefficients. It is shown that the simulations give
qualitative agreement with theoretical results and other nu-
merical calculations.

II. GOVERNING EQUATIONS
FOR SUPERCRITICAL FLUID

Although major characteristics of heat transfer near the
critical point can be studied by simple model equations, the
compressible Navier-Stokes equations supplemented by a
proper form of the energy equation provide a firm foundation
for a complete description of the phenomena. Accordingly,
the following set of macroscopic equations are approximated
in our approach:

�t� + ����u�� = 0 �1�

�t��u�� + ����u�u�� = − ��p + ���S�� �2�

�tT + ���Tu�� = ���DT,v��T� −
T

�cv
��Tp����u�, �3�

where � , u , p , T , S , cv, and � are the density, velocity,
pressure, temperature, strain rate, specific heat at constant
volume, and dynamic viscosity, respectively. The symbol ��

denotes the derivative � /�� so, for instance, ��Tp��

= ��p /�T�� is the thermodynamic tension. Following Ein-
stein’s convention, repeated indices imply summation. It be-
came evident from the asymptotic analysis presented in �3�
that the compression work plays a prominent role in the heat
transfer problems we investigate here. Therefore, for sim-
plicity, the heat due to friction was neglected in this work.
Note also that the thermal diffusivity is defined at constant
volume by*gah@sunserv.kfki.hu
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DT,v �
k

�cv
, �4�

where k is the heat conductivity.
The equation system above is closed by an equation of

state. With a few exceptions �see, e.g., �14��, the van der
Waals equation

p =
�RT

1 − b�
− a�2 �5�

or the linearized equation of state

� = �0�1 + �T�p − p0� − �p�T − T0�� �6�

is used for the simulation of supercritical fluids. In Eq. �5� R,
a, and b are the universal gas and the van der Waals con-
stants, respectively. In Eq. �6� �0 , p0, and T0 are reference
values, �T= ��� /�p�T is the isothermal compressibility, and
�p= ��� /�T�p is the isobaric thermal expansion coefficient.

Although these equation of states do not lead to accurate
critical exponents, they proved to be useful in the under-
standing of the basic heat transfer mechanisms in supercriti-
cal fluids �3�. It is worth noting that, instead of solving Eqs.
�1�–�3� directly, the acoustically filtered equations �15� are
solved in most numerical studies. The filtering is equivalent
to apply a low-Mach-number approximation. The basic out-
come of acoustically filtered equations is that the pressure is
composed of a spatially independent background part and an
asymptotically smaller dynamical part:

p = p0�t� + Ma2 p�1��x,t� + o�Ma2� , �7�

where Ma is the Mach number and p�1� replaces p in the
momentum equation after substitution and ordering; further-
more the equation of state is written as

� = ��T,p0� . �8�

Hence the dynamical fluctuations in pressure do not enter
into the equation of state. Note that an additional equation is
needed for the assessment of p0. In our approach, we will not
use acoustic filtering; therefore we can represent the acous-
tics accurately. However, as we shall see, the relevant time
scale �piston effect time scale� for the heat transfer in a su-
percritical fluid is much higher than the acoustic time scale,
so the strict time step limit arising from the resolution of
acoustic waves can be relaxed.

Note that, following Nikolayev et al. �14�, we shall ap-
proximate Eq. �3�, which is the “cv formalism” of the energy
equation. This formalism is preferred to the “cp formalism,”
because of the much weaker divergence of cv compared to cp
�specific heat at constant pressure� near the critical point.
Indeed, expressing the specific heats in terms of �=T−Tc,
one can write cp��−1.2 �16� and cv��−0.1 �14�. Obviously,
the divergence of cv is less strong than that of cp. This state-
ment holds for a supercritical state around the pseudocritical
temperature, too. As an example, Fig. 1 shows the specific
heats of water at 220 bar around the pseudocritical tempera-
ture �17�. It is also worth noting that the thermal diffusivity
defined by �4� remains almost constant below the pseud-
ocritical temperature, while in the case of the cp formalism

k /�cp decreases rapidly in the same temperature range
�Fig. 2�. Nevertheless, we note that it is straightforward to
modify our proposed model in conformity with the cp for-
malism.

For treating buoyantly driven flows we use the Bouss-
inesq approximation in line with some numerical studies of
supercritical fluid �see, e.g., �13��. The principal assumption
is that the density variation is small in the fluid, i.e.,
�� /��1. Note that this approximation restricts the scale
height for motions such that, if L is the characteristic dimen-
sion for the motion, the hydrostatic density variation must
remain small over this scale. The momentum equation is
simplified by subtracting off the hydrostatic contribution and
absorbing it into the pressure. Under the assumption that to
leading order ��=−�T�, i.e., the dynamic pressure fluctua-
tions cannot compete with temperature fluctuations in modi-
fying density, the momentum equation can be written as
follows:
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FIG. 1. Specific heats of water as a function of temperature at
supercritical pressure.
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FIG. 2. Thermal diffusivity of water at constant volume and
pressure as a function of temperature at supercritical pressure.
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�tu� + ���u�u�� = −
1

�0
��p� − �pTgez +

�

�0
��S��. �9�

It is worth mentioning that according to acoustic filtering ��
corresponds to ��1� in the momentum equation. Finally we
note that, following �18�, the divergence of the thermal con-
ductivity near the critical point can be taken into account by
the following relation:

k = 1 + 0.75��T − Tc�/Tc�−0.5. �10�

III. THE LATTICE BOLTZMANN METHOD

We use the lattice Boltzmann method �19–21� for the so-
lutions of Eqs. �1�, �3�, and �9�.

A. The continuity and momentum equations

For the solution of the Navier-Stokes equations with a
nonideal gas equation of state, one can adopt the method of
Shan and Chen �22�. For completeness we briefly recall the
basic steps of this method.

The lattice Boltzmann equation using the Bhatnagar-
Gross-Krook �BGK� �23,24� collision operator is given by

f i�r + ci��t,t + �t� − f i�r,t� = −
1

	
�f i�r,t� − f i

eq�r,t�� ,

�11�

where f i�r , t� is the one-particle velocity distribution func-
tion, ei is the lattice velocity vector, 	 is the relaxation time,
which controls the rate of approach to the local equilibrium
f i

eq�r , t�, and �t is the time step. For a two-dimensional
nine-velocity �D2Q9� model the lattice vectors take
the form ei= �cos�
 i−1

2 � , sin�
 i−1
2 ��, i=1,2 ,3 ,4, and ei

=�2�cos�
 i−9/2
2 � , sin�
 i−9/2

2 ��, i=5,6 ,7 ,8, and the local equi-
librium distribution function can be given by

f i
eq = wi��1 +

1

cs
2ci�u�

eq +
u�

equ�
eq

2cs
4 �ci�ci� − cs

2����	 , �12�

where u�
eq=u�

� +a�	 and a�=F� /� represents the acceleration
due to the intermolecular force F� between molecules. u�

� is
calculated by taking the following moment of the distribu-
tion functions: �u�

� =
i f ici�.
The lattice weights are given as follows: w0= 4

9 , wi=
1
9 for

i=1,2 ,3 ,4 and wi=
1

36 for i=5,6 ,7 ,8, and the lattice speed
of sound is defined by cs

2=1 /3. The macroscopic quantities,
density and hydrodynamic velocity, are calculated as fol-
lows:

� = 

i

f i, u� = u�
� +

1

2
F�. �13�

The intermolecular force is computed as the gradient of a
suitable chosen interaction pseudopotential ��r�,

F��r� = − G�t��r����r� , �14�

where the parameter G controls the strength of the interac-
tion. Using the lattice vectors the gradient can be approxi-
mated as follows:

���r� �
1

�t



i

qi��r + ci�ci, �15�

where qi=1 /3 for i=1,2 ,3 ,4 and qi=1 /12 for i=5,6 ,7 ,8.
Using this approximation, the force can be rewritten as

F��r� =
G

3
��r�


i

qi��r + ci��ci�. �16�

In order to simulate van der Waals gases �5� the pseudopo-
tential ��r� has to be written as follows:

� =
�

6

�� RT

1 − b�
− a� − cs

2	
G

. �17�

Considering the linearized equation of state �6�, the po-
tential function is given by

� =
�6��/�0 − 1 + �p�T − T0�

�T
+ p0 − �cs

2	
G

. �18�

It has been pointed out �22� that, using this method, one
can solve the Navier-Stokes equations

�t� + � · ��u� = 0,

���t + u · ��u = − �p + � · ���u� , �19�

where the pressure is given by

p = �cs
2 +

G

6
�2, �20�

and the kinematic viscosity is given by �=� /�
= �	−0.5�cs

2�t.
For treating buoyancy-driven flows the gravity force

needs to be represented. This can be done by adding an ex-
ternal force term to the right-hand side of Eq. �11�:

Fy = 3wig�p�T − Tref�ciy�t , �21�

where Tref is a reference temperature.

B. The energy equation

The energy equation is solved with a lattice Boltzmann
model using another set of distribution functions. Since Eq.
�3� is the well-known scalar transport equation for tempera-
ture with an extension of the work done by the compressibil-
ity, we basically extend the simple lattice Boltzmann model
proposed by Inamuro et al. �25�, taking into account the
compression work.

So the following lattice Boltzmann equation is solved �de-
tails of the derivation of the macroscopic energy equation �3�
from this mesoscopic equation is given in the Appendix�:
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gi�r + ci��t,t + �t� − gi�r,t� = −
1



�gi�r,t� − gi

eq�r,t�� + qi,

�22�

in which the local equilibrium distribution function is de-
fined as

gi
eq = wi�T +

ci�

cs
2 �Tu� − D̃T��T�	 . �23�

The last term on the right-hand side of �22� is introduced
to model the compression work and it is given by

qi = − �twi
RT

cv�1 − b��
��u� �24�

for the van der Waals gas, while it is written as

qi = − �twi
T

cv�

�p

�T
��u� �25�

for the linearized equation of state.
Note that the equilibrium distribution function also has an

extra term D̃T��T when its current form is compared with the
one proposed in �25�. This term assures that the heat diffu-
sion can change in both space and time in our model.

The temperature is obtained as the first moment of the
distribution functions:

T = 

i

gi. �26�

In the numerical examples presented in the next section, the
derivatives have been approximated by simple central differ-
ence schemes. It can be shown �see the Appendix� that the
solution of the evolution equation �22� yields the solution of
�3�, and the transport coefficient is given by

D̃T,v = DT,v + �
 − 1/2�cs
2�t . �27�

C. Boundary conditions

For the numerical examples presented in the next section
we had to model isothermal nonslip solid boundaries. These
walls have been modeled by using the method proposed in
�25,26�. Here the basic idea is to apply a counterslip velocity
in the equilibrium distributions and determine the corre-
sponding distribution functions, which step into the domain
at the walls. For the diffusion and compression work terms
the gradients have been evaluated by finite differences at the
walls.

The evaluation of the gradient of the potential functions
needs a slightly more elaborated approach. In our simula-
tions the potential functions at the walls have been extrapo-
lated from the potential of the inner nodes. That is,
�i,j+1=2�i,j −�i,j−1, where �i , j+1� is a wall node, and
�i , j�, �i , j−1� are in the fluid domain. Then �16� can be ap-
plied without modification just as at the inner nodes. The
wettability of the walls has not been modeled.

IV. NUMERICAL SIMULATION OF HEAT TRANSFER

Three numerical examples are presented to demonstrate
the applicability of our model. Our first numerical example is
used to demonstrate that the proposed method can describe
accurately heat transfer problems of fluids with variable heat
conductivity, which is essential for supercritical fluids near
the critical point. The second example demonstrates that the
method can predict the heat transfer caused by the piston
effect in a supercritical fluid near the critical point. In the
third example we simulate the onset of convection in a
Rayleigh-Bénard cell by considering a supercritical fluid.

A. Heat conduction with variable coefficient

We have simulated a fluid layer between two plates with-
out gravity. The distance between the plates was unity. No-
slip walls were used at the top and bottom boundaries and a
periodic boundary condition was applied in the horizontal
direction.

The thermal conductivity of the fluid depended on the
temperature and it was given in the form

k = k0�1 + mT� , �28�

where m is an adjustable parameter.
The lower and upper plates had the temperatures Tl and

Tu, respectively. In steady state the temperature is equili-
brated between the plates by heat conduction and there is no
flow in the domain. Accordingly, the Laplace equation can be
solved, giving the analytical solution

T =
��1 + mTl�2 + ��1 + mTu�2 − �1 + mTl�2�y − 1

m
. �29�

Since the problem is actually one dimensional, the simula-
tion domain had the size 4�50 lattice nodes. The relaxation
times were 	=1 and 
=0.8. The temperatures at the lower
and upper plates were 0 and 1, respectively. The variation of
the heat conductivity was taken into account in the form
of �28� by changing DT,v in each time step as follows:
DT,v= 
−1/2

3 �tmT.
In Fig. 3 the temperature profiles obtained from a simula-

tion after equilibrating the temperature and calculated from
Eq. �29� are shown for a parameter m=10. Obviously, the
agreement is very good, demonstrating the proper treatment
of the heat conductivity and the boundary conditions. In
steady state the velocity was zero in the overall domain up to
round-off errors.

B. Heat transfer enhancement due to the piston effect

As a second numerical example a fluid layer slightly
above the critical point has been heated from below. The
simulation domain was divided into 20�100 lattice sites and
no-slip walls were used at the top and bottom boundaries.
The periodic boundary condition was applied in the horizon-
tal direction. The parameters of the van der Waals fluid were
a=9 /8, b=1 /3, R=1 so the corresponding critical values
are unity: �c=1, Tc=1. The relaxation parameters were cho-
sen to be 	=0.8 and 
=0.7.
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Initially the fluid was at rest, ux=uy =0, and its initial
temperature was above the critical point. Several simulations
have been carried out with different initial temperatures and
accordingly �=T−Tc, but keeping the initial density as �
=1 in the overall domain. Each simulation was started with a
small temperature jump �T=0.003 at the lower boundary.
The temperature at the upper plate was kept constant. Similar
simulations have been carried out in �14,3�. So we can give a
qualitative comparison with those calculations.

In Fig. 4. the time evolution of the normalized tempera-
ture �T /Tinitial� in the vertical center of the layer �top figure�
and in the boundary layer at the bottom plate are shown for
various initial temperatures. According to the diffusive sce-
nario, the temperature at the center of the channel should
start to increase smoothly only in some time after the tem-
perature jump at the lower plate. Instead of this slow process,
Fig. 4 shows that the heat transfer speeds up due to the piston
effect in the case of a supercritical fluid. Almost immediately
after the temperature jump, heat is transferred to the center
because the thin boundary layer developed on the bottom
starts to expand due to the high thermal expansion of the
fluid. This expanding boundary layer, like a piston, com-
presses the rest of the highly compressible fluid and the com-
pression heats the bulk up adiabatically. As a consequence of
the expansion of the boundary layer, the density drops down
rapidly in the boundary layer �see Fig. 4, bottom�. Mass con-
servation implies that the expansion within the boundary
layer is compensated by density increase in the bulk. Due to
the piston effect the heat equilibration is very rapid and not
smooth at all. Note that the amount of thermoacoustically
transferred heat gradually decreases as we move further from
the critical point by increasing the initial temperature. This is
a consequence of the gradually decreasing compressibility
and thermal expansion coefficient. At higher thermal expan-
sions, the density drop in the boundary layer is more intense
as would be expected.

In Fig. 5 a sequence of snapshots of the spatial tempera-
ture distributions in the channel is shown at various steps
�step 100, 500, and 2000�. The plots show the typical picture
of temperature distributions observed in the numerical ex-
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periments of other researchers �see, e.g., �14��. The tempera-
ture is homogeneously increased in the channel and the hot
and cold thermal boundary layers can be observed clearly
near the walls. Before 300 steps the distributions are not

fully homogeneous in the bulk. Such observations have been
given in only a few reports �see e.g., �3�� since, as has al-
ready been mentioned, most numerical studies apply the
acoustic filtering procedure, averaging over the spatial varia-
tion of the pressure waves and taking into account only the
time variation of the pressure in a homogeneous manner
throughout the channel. As we do not apply acoustic filter-
ing, the propagation of pressure waves and the associated
heat transport can be followed in both time and space. How-
ever, it is worth noting that in our approach the pressure
waves propagate with the lattice speed of sound. So in order
to adequately represent processes in the acoustic time scale,
this velocity has to coincide with the sound speed of the
fluid. If the sound speed and the viscosity of the fluid are
known, the required time step and spatial resolution
of the simulation can be estimated from the relations
�= �	−0.5�cs

2�t and �x=cs�t �27�. As we approach the criti-
cal point the sound speed decreases; however, it still remains
high enough unless � is extremely small. So an adequate
representation of the acoustics can be quite challenging un-
less the system size and the required simulation time are
small. On the other hand, the piston effect time scale
tPE=L2 / �DT,p�cp /cv−1�2� �where DT,p=k /�cp is the thermal
diffusivity at constant pressure� is much larger than the
acoustic time scale ta=L /cs, tPE� ta, therefore a proper rep-
resentation of processes in this time scale can be easily
achieved by the proposed method, as can be seen in the last
figures of the sequence in Fig. 5.

For quantitative evaluation, we also solved the Navier-
Stokes and energy equations �without acoustic filtering� us-
ing the MacCormack scheme with flux-corrected transport
�28�. The same numerical approach has been used by Nakano
and Shiraishi �29� for the simulation of the piston effect. The
physical parameters were chosen as specified before and the
wall temperature was 1.23. For the MacCormack scheme
8000 cells were needed to obtain grid-independent solutions
on a uniform grid. The time step required for numerical sta-
bility was 5�10−5. Using the lattice Boltzmann method
�LBM� with 1000 and 2000 nodes, we could get practically
the same temperature profiles in the same dimensionless
times; therefore simulations presented here were obtained us-
ing 1000 nodes. In Fig. 6 we show the temperature distribu-
tions in the fluid layer at dimensionless time 5 and 40 �which
correspond to 5000 and 40 000 LBM time steps; and 100 000
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and 800 000 steps in the MacCormack scheme�. The simula-
tion results are in good agreement with each other. Small
deviations can be seen in the earlier stage of the simulations,
which are due to the fact that in the LBM we do not resolve
the acoustics properly. As has been mentioned, in the LBM
pressure waves travel with the lattice speed of sound, while
in the MacCormack scheme the pressure and corresponding
temperature waves travel with the real speed of sound. This
can be seen in the inset, where we show that the temperature
waves are out of phase in the two schemes. However, the
acoustic filtering assures that the average effect of the trav-
eling and reflected pressure waves is represented well in the
LBM and, as can be seen in the figure, the two schemes give
practically the same results as the time increases.

C. Onset of convection in a Rayleigh-Bénard cell

The study of the onset of convection in a Rayleigh-
Bénard cell is a classical problem of thermohydraulics. Con-
sider a viscous fluid layer between two plates in gravity. The
distance between the plates is L. The layer is heated at the
lower plate TL while the upper plate is maintained at a lower
temperature TU=TL−�T. As is well known, there is no con-
vection in the cell when the temperature gradient �T is too
small. When �T is increased, the system loses its stability
and at the limit �Tonset, convection starts in the cell. Using
nonslip walls at the top and bottom the convection is estab-
lished at Ra=Rac�1708 in incompressible fluids, where the
Rayleigh number Ra is defined as follows:

Ra =
�p�TgL3

�DT,v
. �30�

The mechanical stability of a compressible fluid layer is lost
at higher Rayleigh numbers, based on theory �30–32�. This is
due to a stabilizing mechanism called the adiabatic tempera-
ture gradient GAT� g�

�p
��T−�S�, where �S is the isentropic

compressibility. Accordingly, near the critical point where
the fluid is highly compressible, there is a crossover between
the Rayleigh and Schwarzschild criteria and the onset hap-
pens at

Racorr�Rac � 1708 �31�

where

Racorr =
gl4�p�ccp

�DT,v
��T

l
−

gT�p

cp
	 . �32�

l and �T are the hot boundary layer thickness and the asso-
ciated temperature gradient, respectively.

Convection experiments on supercritical 3He in a
Rayleigh-Bénard cell has been reported in �31�. The cell was
heated by a constant heat flux at the bottom wall and the top
wall was kept at a constant temperature. The experimental
setup of Kogan and Meyer supported the theoretical predic-
tions. On the other hand, temperature oscillations above the
convection onset were observed at the bottom wall of the cell
in the experimental setup. The appearance of these oscilla-
tions was predicted later by numerical simulations too
�10,33,12�. Based on their numerical experiments, Amirou-

dine and Zappoli gave an explanation for the heat transfer
oscillations, appointing the piston effect as the responsible
driving mechanism.

We have used our lattice Boltzmann model to predict the
critical Rayleigh number near the critical point in a super-
critical fluid. The simulation domain is a rectangular box
with the size �nx=40,ny =20�. The relaxation parameters
were chosen to be 	=0.8 and 
=0.7. Nonslip walls were
used at the top and bottom boundaries. A periodic boundary
condition was applied in the horizontal direction. As an ini-
tial condition we set the critical density �=�c=1 and the
convection-free equilibrium temperature profile was defined
slightly above the critical point Tc=1.0. To excite the un-
stable modes an initial small perturbation in the form of a
cosine wave was applied to the temperature field, i.e.,

T�x,y� = TL −
y

ny − 1
�T + 10−3 cos�
x/nx� , �33�

where TL=TU+�T and TU=1.03.
A number of simulations have been done using the linear-

ized equation of state, which provides a way to vary �p while
keeping �T=1 constant. The specific heat at constant volume
has been chosen to be cv=100. Using the thermodynamic
relations

�T�cp − cv� = T�p
2/� , �34�

cp��T − �s� = T�p
2/� , �35�

the GAT contribution can be rewritten as follows:

GAT =
gT�p

cv + T�p
2/��T

. �36�

Therefore at small values of �p �far from the critical point�
the adiabatic temperature gradient is negligible, so we have
to get back the critical Rayleigh number of the incompress-
ible fluid. As we increase �p, the adiabatic temperature gra-
dient is increasing and the critical Rayleigh number has to
increase too, since the other parameters are nearly constant.

The accurate critical Rayleigh number can be determined
as follows. In an incompressible fluid the amplitude of the
initial perturbation exponentially decays when �T is less
than �Tonset. Above this limit the perturbation grows expo-
nentially. So the critical Rayleigh number can be determined
by varying �T and studying the evolution of the perturba-
tion. By determining the rate of growth of the perturbation,
one can accurately estimate the critical Rayleigh number as
discussed in �34�. We could not follow this procedure strictly,
since the exponentially growing phase was very limited at
some high �p. Therefore we first looked for the approximate
value of �Tonset and then a few simulations were carried out
around this �T value. Then the critical Rayleigh number was
evaluated by simple linear interpolation of the Rayleigh
number between the growing and decaying phases.

Figures 7–9 show the time evolution of the maximum
vertical velocity for three different �p values. As can be seen
in Fig. 7 ��p=1� the critical Rayleigh number is between
1704 and 1716, and obviously it is very close to 1710. Even
considering the two limiting values the error is less than 1%,
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taking the theoretical value 1708 as a reference. In this com-
putation the GAT contribution is negligible.

As we approach the critical point �increasing the thermal
expansion coefficient� the critical Rayleigh number gradually
increases �Figs. 8 and 9�. At �p=5 the saturation of the ve-
locity can be seen in the plot at the Rayleigh number 1962.

The overall picture of the simulations is given in Fig. 10
where the critical Rayleigh number as a function of �p /�T is
shown. As expected, the critical Rayleigh number increases
with �p due to the stabilizing mechanism of the adiabatic
temperature gradient. The increase of the critical Rayleigh
number is a nearly linear function of �p /�T, since the hot
boundary layer and its thickness do not change significantly
in the parameter range we studied.

V. CONCLUSION

We have proposed a lattice Boltzmann model for the nu-
merical simulation of heat transfer in supercritical fluids. Nu-
merical examples have demonstrated that the method can
simulate heat transfer near the critical point, where several
thermophysical parameters diverge. It has been shown that

the critical speeding up of the heat transfer due to the rapidly
increasing compressibility can be predicted by the proposed
model. The onset of Rayleigh-Bénard convection has been
studied near the critical point. The model can predict the
critical Rayleigh number accurately far from the critical
point. When the thermal expansion increased, the critical
Rayleigh number increased in the simulations due to the sta-
bilizing effect of the adiabatic temperature gradient, as was
expected. Since the study of the crossover between the Ray-
leigh and Schwarzschild criteria is an intensive research field
�8,9,11,35�, we believe that the proposed model extended by
a more realistic equation of state can be a useful tool in this
research direction.

Although it has not been exploited in the current paper,
we believe that our model can be especially useful when heat
transfer on crossing the critical point needs to be studied.
Below the critical point, a phase transition can take place,
which is difficult to simulate by other numerical methods.
On the contrary, the lattice Boltzmann method proposed here
has been used mainly for phase transition problems before,
so it might be a useful research tool for the modeling of such
problems.
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APPENDIX

Here we briefly review the derivation of the energy equa-
tion �3�. The lattice Boltzmann equation for the energy is
given as follows:

gi�x + ci��t,t + �t� − gi�x,t�

= −
1



�gi�x,t� − gi

eq�x,t�� − �twi
T

�cv
��Tp����u�,

where the local equilibrium is

gi
eq = wi�T +

ci�

cs
2 �Tu� − DT,v��T�	 . �A1�

Let us introduce the following series expansions:

gi = gi
�0� + �tgi

�1� + �t2gi
�2� + O��t3� ,

and the operator Di���t+ci����. Taylor expansion of the
left-hand side of the lattice Boltzmann equation yields



n=1

�
�tn

n!
Di

ngi�x,t� = −
1



�gi�x,t� − gi

eq�x,t��

− �twi
T

�cv
��Tp����u�. �A2�

Substitution of the expansions into �A2� and keeping
terms up to second order gives

gi
eq − 
�tDtgi

�0� − 
�t2Dtgi
�1� − 


�t2

2
Di

2gi
�0�

− 
�twi
T

�cv
��Tp����u�

= gi
�0� + �tgi

�1� + �t2gi
�2�.

Grouping terms according to their order in �t yields

gi
�0� = gi

eq�0�, O��t0� ,

gi
�1� = − 
Dtgi

�0� − 
wi
T

�cv
��Tp����u�, O��t1� ,

gi
�2� = − 
Dtgi

�1� − 

1

2
Di

2gi
�0�, O��t2� .

Substituting the first-order equation into the second-order
equation, we obtain

gi
�2� = − 
�1

2
− 
	Di

2gi
�0� + 
2wiDt� T

�cv
��Tp����u�	 .

It can be easily verified that 
i�gi−gi
eq�=0 and consequently


i�gi
�1�+�tgi

�2��=O��t2�, so



i

��t + ci����gi
�0� + 


i

wi
T

�cv
��Tp����u�

+ �t

i
�1

2
− 
	��t

2 + 2�tci��� + ����ci�ci��gi
�0�

− �t

i


wi��t + ci����� T

�cv
��Tp����u�	 = O��t2� .

After some algebra we have

�tT + ���Tu�� − �t
�t� T

�cv
��Tp����u�	

+ �t�1

2
− 
	��t

2T + 2�t���Tu� − DT,v��T� + cs
2��

2T�

= ���DT,v��T� −
T

�cv
��Tp����u� + O��t2� .

Using the fact that

�tT + ���Tu�� = ���DT,v��T� −
T

�cv
��Tp����u� + O��t� ,

we can simplify the equation above as follows:

�tT + ���Tu�� −
�t

2
�t� T

�cv
��Tp����u�	 + �t�1

2
− 
	�t���Tu��

= ���
DT,v + �tcs
2�
 −

1

2
	���T� −

T

�cv
��Tp����u�

+ O��t2� .

Since the space derivatives are more dominant than the time
derivatives, i.e., �t��t��, we can consider the time deriva-
tives, which have already had a multiplying factor �t as
terms of O��t2�, so we can rewrite the equation above in the
final form as follows:

�tT + ���Tu�� = ���
DT,v + �tcs
2�
 −

1

2
	���T�

−
T

�cv
��Tp����u� + O��t2� .

To increase the order of the method, an alternative solu-
tion has been recently proposed by Chopard and Latt �36�,
who canceled the undesired time derivative term by adding a
counterterm to the lattice Boltzmann equation. Note that here
we have assumed that 
 is constant in space and time.
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